摘要

As an optimal estimation method, the Kalman filter is the most frequently-used data fusion strategy in the field of dynamic navigation and positioning. Nevertheless, the abnormal model errors seriously degrade performance of the conventional Kalman filter. The adaptive Kalman filter was put forward to control the influences of model errors. However, the adaptive Kalman filter based on the predicted residuals (innovation vector) requires reliable observation information, and its performance is significantly affected by outliers in the measurements. In this paper, a novel adaptively-robust strategy based on the Mahalanobis distance is proposed to weaken the effects of abnormal model deviations and outliers in the measurements. In the proposed scheme, the judging index is defined based on the Mahalanobis distance, and the adaptively-robust filtering is performed when the observations are reliable, otherwise, the robust filtering is performed based on the robust estimation method. Various experiments with the actual data of GPS/INS integrated navigation systems are implemented to examine validity of the proposed scheme. Results show that both the influences of model deviations and outliers are weakened effectively by using the proposed adaptive robust filtering scheme. Moreover, the proposed scheme is easy to implement with a reasonable calculation burden.