摘要

The electronic and vibrational atomic responses to external electric field (EF) are computed to detail intramolecular energy transfer in a proposed molecular nanoelectronic field-effect system. The parallel and perpendicular electronic and vibrational contributions to intramolecular energy transfer are computed using, respectively, quantum theory of atoms-in-molecule and an energy partitioning scheme based on normal modes vibrational analysis. The symmetrical and asymmetrical intramolecular energy transfers are interpreted, respectively, as Peltier-like and Joule-like effects and quantified in terms of appropriate coefficients. Dependencies of these coefficients on EF are investigated. In addition, a semiclassical temperature model is introduced to describe symmetrical and asymmetrical temperature distributions which are attributed, respectively, to the Joule-like and Peltier-like heatings. This procedure can be used to map out intramolecular energy distribution in molecular nanoelectronic systems.

  • 出版日期2014-12