摘要

Theoretical and experimental study of the surface plasmon-polariton and guided wave plasmon polariton modes is presented for the Sapphire/Ag/Polycarbonate/Air structure. Theoretical results are obtained by solving complex multilayer eigenvalue equations as well as the reflectivity equation for this structure. It is proposed that the mode attenuation can be significantly reduced by inserting a low index dielectric buffer between the metal and the guiding dielectric layer. The dispersion and attenuation curves are generated. Both the surface plasmon and guided wave plasmon polariton modes are studied experimentally. The experimental values of the effective refractive indices agree well with the theoretical values. The electric field profiles are generated and used to examine the nature of modes. After optimization of various parameters the condition for low loss single mode guiding is obtained for the proposed structure. Effect of metal thickness on surface plasmon mode is also discussed. It is inferred that in a properly optimized plasmonic waveguide, the losses can be reduced by a factor of 4.

  • 出版日期2012-3-15