摘要

We propose a practical Convolution Neural Network (CNN) model termed the CNN for Semantic Segmentation for driver Assistance system (CSSA). It is a novel semantic segmentation model for probabilistic pixel-wise segmentation, which is able to predict pixel-wise class labels of a given input image. Recently, scene understanding has turned out to be one of the emerging areas of research, and pixel-wise semantic segmentation is a key tool for visual scene understanding. Among future intelligent systems, the Advanced Driver Assistance System (ADAS) is one of the most favorite research topic. The CSSA is a road scene understanding CNN that could be a useful constituent of the ADAS toolkit. The proposed CNN network is an encoder-decoder model, which is built on convolutional encoder layers adopted from the Visual Geometry Group's VGG-16 net, whereas the decoder is inspired by segmentation network (SegNet). The proposed architecture mitigates the limitations of the existing methods based on state-of-the-art encoder-decoder design. The encoder performs convolution, while the decoder is responsible for deconvolution and un-pooling/up-sampling to predict pixel-wise class labels. The key idea is to apply the up-sampling decoder network, which maps the low-resolution encoder feature maps. This architecture substantially reduces the number of trainable parameters and reuses the encoder's pooling indices to up-sample to map pixel-wise classification and segmentation. We have experimented with different activation functions, pooling methods, dropout units and architectures to design an efficient CNN architecture. The proposed network offers a significant improvement in performance in segmentation results while reducing the number of trainable parameters. Moreover, there is a considerable improvement in performance in comparison to the benchmark results over PASCAL VOC-12 and the CamVid.