摘要

Slant is the degree to which a surface recedes or slopes away from the observer about the horizontal axis. The perception of surface slant may be derived from static monocular cues, including linear perspective and foreshortening, applied to single shapes or to multi-element textures. It is still unclear the extent to which color vision can use these cues to determine slant in the absence of achromatic contrast. Although previous demonstrations have shown that some pictures and images may lose their depth when presented at isoluminance, this has not been tested systematically using stimuli within the spatio-temporal passband of color vision. Here we test whether the foreshortening cue from surface compression (change in the ratio of width to length) can induce slant perception for single shapes for both color and luminance vision. We use radial frequency patterns with narrowband spatio-temporal properties. In the first experiment, both a manual task (lever rotation) and a visual task (line rotation) are used as metrics to measure the perception of slant for achromatic, red-green isoluminant and S-cone isolating stimuli. In the second experiment, we measure slant discrimination thresholds as a function of depicted slant in a 2AFC paradigm and find similar thresholds for chromatic and achromatic stimuli. We conclude that both color and luminance vision can use the foreshortening of a single surface to perceive slant, with performances similar to those obtained using other strong cues for slant, such as texture. This has implications for the role of color in monocular 3D vision, and the cortical organization used in 3D object perception.

  • 出版日期2014-1
  • 单位McGill