摘要

We demonstrate that iron oxide in the form of hematite, suitable as absorption material in photo-electrochemical cells, can be produced by pulsed chemical vapour deposition. By choosing carbon monoxide or nitrogen as carrier gases in the process the phase and granularity of the grown material can be controlled. The choice of carrier gas affect the decomposition rate of iron pentacarbonyl used as iron precursor. The iron oxide phase is also dependent on the chosen substrate, here fluorine doped tin oxide and crystalline silicon have been used. Regardless of the substrate nitrogen yields hematite, whereas carbon monoxide gives, magnetite on Si and maghemite on fluorine doped tin oxide. A combination of Raman spectroscopy, X-ray diffraction, and hard X-ray photoelectron spectroscopy were used for characterization of the crystalline phase and chemical composition in the films. Scanning electron microscopy were used to visualise the deposited films' nano-structure.

  • 出版日期2015-7