摘要

The selection of a desirable solvent or solvent system as the carrier of a particular polymer is fundamental for the optimisation of electrospinning. Solvent selection is pivotal in determining the critical minimum solution concentration to allow the transition from electrospraying to electrospinning, thereby significantly affecting solution spinnability and the morphology of the electrospun fibres. 28 solvents diversely positioned on the Teas graph were studied for their solubility and electrospinnability for making polymethylsilsesquioxane (PMSQ) solutions. The results are combined and mapped on the Teas graph using different colour codes. Based on this new spinnability-solubility map, various solvent systems for PMSQ are methodically developed. Solvents are selected to produce binary solvent systems that have solvent parameters close to a good single solvent for electrospinning of the polymer solution. This work shows that solvents of high solubility do not necessarily produce solutions good for electrospinning. Polymethylsilsesquioxane solutions of the same concentration in solvents of partial solubility showed better spinnability than solutions in solvents of high solubility. A methanol-propanol binary solvent system produced electrospun fibres with high surface porosity, showing that high volatility and high vapour pressure difference among solvents mixed can induce phase separation in electrospinning. It is noteworthy that the binary solvent system mixing 2-nitropropane (high solubility) and dimethylsulphoxide (non-solvent), neither of which exhibited high volatility, also produced highly porous electrospun fibres. This demonstrates that phase separation can be induced by solubility difference in the electrospun polymer solution.

  • 出版日期2010-3-24