摘要

New methods of analysing genetic data provide powerful tools for quantifying dispersal patterns and reconstructing population histories. Here we examine the population structure of the bumblebee Bombus hortorum in a model island system, the Western Isles of Scotland, using microsatellite markers. Following declines in other species, B. hortorum is the only remaining long-tongued bumblebee species found in much of Europe, and thus it is of particular ecological importance. Our data suggest that populations of B. hortorum in western Scotland exist as distinct genetic clusters occupying groups of nearby islands. Population structuring was higher than for other bumblebee species which have previously been studied in this same island group (F(st) = 0.16). Populations showed significant isolation by distance. This relationship was greatly improved by using circuit theory to allow dispersal rates to differ over different landscape features; as we would predict, sea appears to provide far higher resistance to dispersal than land. Incorporating bathymetry data improved the fit of the model further; populations separated by shallow seas are more genetically similar than those separated by deeper seas. We argue that this probably reflects events following the last ice age when the islands were first colonized by this bee species (8,500-5,000 ybp), when the sea levels were lower and islands separated by shallow channels would have been joined. In the absence of significant gene flow these genetic clusters appear to have since diverged over the following 5,000 years and arguably may now represent locally adapted races, some occurring on single islands.

  • 出版日期2011-8