摘要

Objective: although n-3 polyunsaturated fatty acids (PUFAs) play crucial roles in brain development and function, neither the optimal level of n-3 PUFAs nor the optimal ratio of n-6/n-3 PUFAs in the maternal diet are well defined. In this study, we investigated the effects of dietary n-6/n-3 PUFA ratios during pregnancy on neuro-genesis and apoptosis in the brains of mouse offspring.
Metods: female C57BL/6J mice were fed one of three diets with high, medium and low ratios of n-6/n-3 PUFAs (15.7:1, 6.3:1, 1.6:1), as well as a high fish oil diet with a n-6/n-3 ratio of 1:5.7; an n-3 PUFA-deficient diet served as control. The feeding regimens began two months before mouse conception and continued for the duration of the pregnancy. The neuro-genesis and apoptosis of hippocampal CA3 area in the offspring were detected.
Results: compared to the n-3 PUFA-deficient diet, n-3 PUFA-containing diets, particularly those with n-6/n-3 PUFA ratios of 6.3:1 and 1.6:1, significantly increased both phosphorylation of histone H3 at ser 10 (p-H3ser10) and calretinin-positive cells in hippocampus CA3 of the offspring. Furthermore, increased expression of Bcl2 protein, decreased expression of Bax protein, and reduced caspase 3 activity and numbers of TUNEL apoptotic cells were found in the three diets with high, medium and low n-6/n-3 PUFA ratios. However, there were no differences in any of these parameters between the high fish oil diet group and the n-3 PUPA-deficient diet group.
Conclusions: these data suggest that a higher intake of n-3 PUFAs with a lower ratio of n-61n-3 PUFAs of between about 6:1 to 1:1, supplied to mothers during pregnancy, may benefit brain neuro-genesis and apoptosis in offspring. However, excessive maternal intake of n-3 PUFAs may exert a negative influence on brain development in the offspring.