摘要

The detection of interacting behavior between the hydraulic fracture (HF) and the natural fracture (NF) is of significance to accurately and efficiently characterize an underground complex-fracture system induced by hydraulic-fracturing technology. This work develops a semianalytical pressure-transient model in the Laplace domain to detect interacting behavior between HF and NF depending on pressure-transient characteristics. Our results have shown that no matter what the flow state (compressible or incompressible flow) within a hydraulically induced fracture system, we can easily detect interacting behavior between HF and NF depending on whether the "dip" shape occurs at the formation radial-flow regime. Referring to sensitivity analysis, distance between NF and well, horizontal distance between NF and HF, and NF length are the three most sensitive factors to detect fracture-interacting behavior. Depending on interference analysis, although the pressure-transient characteristics of a pseudosteady-state dual-porosity model can interfere with our proposed methodology, the difference between our model and a pseudosteady-state dual-porosity system lies in whether the value of the horizontal line of dimensionless pressure derivative is equal to 0.5 at the formation radial-flow regime. Our work obtains some innovative insights into detecting fracture-interacting behavior, and the valuable results can provide significant guidance for refracturing operations and fracture detection in an underground fracture system.