摘要

The effect of long-range (LR) interactions on frustrated-spin models is an interesting problem, which provides rich ordering processes. We study the effect of LR interactions on triangular Ising antiferromagnets with the next-nearest-neighbor ferromagnetic interaction (TIAFF). In the thermodynamic limit, the LRTIAFF model should reproduce the corresponding mean-field results, in which successive phase transitions occur among various phases, i.e., the disordered paramagnetic phase, so-called partially disordered phase, three-sublattice ferrimagnetic phase, and two-sublattice ferrimagnetic phase. In the present paper we focus on the magnetic susceptibility at the transition point between the two-sublattice ferrimagnetic and the disordered paramagnetic phases at relatively large ferromagnetic interactions. In the mean-field analysis, the magnetic susceptibility shows no divergence at the transition point. In contrast, a divergencelike enhancement of the susceptibility is observed in Monte Carlo simulations in finite-size systems. We investigate the origin of this difference and find that it is attributed to a virtual degeneracy of the free energies of the partially disordered and 2-FR phases. We also exploit a generalized six-state clock model with an LR interaction, which is a more general system with Z(6) symmetry. We discuss the phase diagram of this model and find that it exhibits richer transition patterns and contains the physics of the LRTIAFF model.

  • 出版日期2016-11-28