摘要

Atomic hydrogen plays important roles in chemical vapor deposition of functional materials, plasma etching and new approaches to chemical synthesis of hydrogen-containing compounds. The present work reports experimental determinations of atomic hydrogen near the grounded electrode in medium-pressure dielectric barrier discharge hydrogen plasmas by means of molecular beam threshold ionization mass spectrometry (MB-TIMS). At certain discharge conditions (a.c. frequency of 24 kHz, 28 kV of peak-to-peak voltage), the measured hydrogen dissociation fraction is decreased from ∼ 0.83% to ∼ 0.14% as the hydrogen pressure increases from 2.0 to 14.0 Torr. A simulation method for extraction of the approximate electron beam energy distribution function in the mass spectrometer ionizer and a semi-quantitative approach to calibrate the mass discrimination effect caused by the supersonic beam formation and the mass spectrometer measurement are reported.