An investigation into which factors control the nanotribological behaviour of thin sputtered carbon films

作者:Shi Baogui*; Sullivan John L; Beake Ben D
来源:Journal of Physics D: Applied Physics , 2008, 41(4): 045303.
DOI:10.1088/0022-3727/41/4/045303

摘要

Ultra-thin (20-100 nm) films deposited on Si surfaces can improve their mechanical and tribological properties. As a stepping stone towards the optimization of such ultra-thin films, herein we report experimental nanoscratch and nanowear data on a-C films of thickness in the range 200-1000 nm on Si aiming to (1) understand the role of film thickness on the nanoscratch behaviour, (2) determine whether the same factors (substrate bias, H/E ratio, etc) are at play for thick films as for the thin films, (3) determine possible design rules for thinner films enabling their optimization for MEMS applications and (4) evaluate the use of the multi-pass (3-scan) procedure for clarifying the locus of failure. To a first approximation, the critical load for total film failure in the nanoscratch test is proportional to thickness provided the films are not too stressed. a-C films of 1 mu m with very high H/E, deposited under high substrate bias, perform well at low load but very poorly in more highly loaded situations. Not only do they exhibit low critical loads but also failure involves extensive delamination outside of the scratch track. This is not observed on thinner films. A suitable strategy for optimizing wear resistance for thin films for MEMS applications is to aim to maximize H/E. For the 200 nm films studied here, the films with the highest H/E showed slightly improved scratch resistance.

  • 出版日期2008-2-21