摘要

Product development based on a morphological matrix involves the process of decision-based design. Although the decision process can generate conceptual schemes under the guidance of qualitative decision objectives, analysis of the interactions among the qualitative objectives is seldom considered, which can lead to unreliable optimal solutions by combining conflicting principle solutions. In addition, due to the ambiguity of the constraints among the qualitative objectives, multiple feasible schemes with equilibrium states are not considered in the concept decision stage. To solve these problems, a decision approach with multiple interactive qualitative objectives is developed for conceptual schemes based on noncooperative-cooperative game theory to consider the tradeoffs among objectives (e.g., cost, quality and operability) using discrete principle solution evaluation data. First, the morphological analysis method can obtain feasible schemes and determine the principle solutions for each subfunction. Second, the principle solutions are quantified using linguistic terms. Then, the subfunctions are categorized through cluster analysis to determine the suitable principle solution. Third, based on the clustering results, a noncooperative game decision model is constructed to identify multiple Nash equilibrium solutions that satisfy the constraints among the objectives. Fourth, a cooperative game decision model is constructed to obtain the optimal scheme as screened by the noncooperative game model. The case study proves that this approach can choose a relatively superior scheme under the existing technical conditions, thereby preventing inconsistency with the actual design expectations.