摘要

The argillite extracted from Bure site (France) is proposed, after being crushed and compacted, as a possible sealing and backfill material in the French geological high-level radioactive waste disposal. In this study, the effects of the grain size distribution and the microstructure on the hydro-mechanical behaviour of the compacted crushed argillite have been investigated. The volume change properties were investigated by running one-dimensional compression tests under constant water content (2.4-2.8%) with loading-unloading cycles. Under various vertical stresses, water flooding tests were carried out under constant-volume condition. Depending on the vertical stress level, either swelling or collapse behaviour was observed in the sense that vertical stress increased or decreased upon flooding respectively. A clear effect of grain size distribution has been also identified: finer samples exhibit stiffer compression behaviour and higher swelling potential. To provide a microstructure insight into the macroscopic behaviour feature observed, both mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM) observations were performed, evidencing that: (i) at the same dry density, the size of inter-aggregate pores is larger for the coarser crushed material; (ii) mechanical compression only reduces the inter-aggregate porosity in the stress range considered; (iii) the micro-mechanisms governing the flooding under constant-volume condition include the swelling of the clay particles, the increase of the intra-aggregate pores and the collapse of the inter-aggregate pores. The results show a strong effect of the grain size distribution on the hydro-mechanical behaviour and thus the close link between the microstructure and the hydro-mechanical behaviour.