摘要

The attenuated live virus vaccine that is used in South Africa to protect against African horse sickness infection was developed more than 50 years ago. With the selection of the vaccine strains by cell culture passage, a correlation between the size of plaques formed in monolayer Vero cultures and attenuation of virus virulence in horses was found. The large plaque phenotype was used as an indication of cell culture adaptation and strongly correlated with attenuation of virulence in horses. There was never any investigation into the genetic causes of either the variation in plaque size, or the loss of virulence. An understanding of the underlying mechanisms of attenuation would benefit the production of a safer AHSV vaccine. To this end, the genomes of different strains of two African horse sickness isolates, producing varying plaque sizes, were compared and the differences between them identified. This comparison suggested that proteins VP2, VP3, VP5 and NS3 were most likely involved in the determination of the plaque phenotype. Comparison between genome sequences (obtained from GenBank) of low and high passage strains from two additional serotypes indicated that VP2 was the only protein with amino acid substitutions in all four serotypes. The amino acid substitutions all occurred within the same hydrophilic area, resulting in increased hydrophilicity of VP2 in the large plaque strains.

  • 出版日期2018-8

全文