摘要

In an attempt to understand the extraordinarily small mass-loss rates of late-type O dwarfs, mass fluxes in the relevant part of (T(eff), g)-space are derived from first principles using a previously-described code for constructing moving reversing layers. From these mass fluxes, a weak-wind domain is identified within which a star's rate of mass loss by a radiatively-driven wind is less than that due to nuclear burning. The five weak-wind stars recently analysed by Marcolino et al. (2009, A&A, 498, 837) fall within or at the edge of this domain. But although the theoretical mass fluxes for these stars are approximate to 1.4 dex lower than those derived with the formula of Vink et al. (2000), the observed rates are still not matched, a failure that may reflect our poor understanding of low-density supersonic outflows. Mass fluxes are also computed for two strong-wind O4 stars analysed by Bouret et al. (2005, A&A, 438, 301). The predictions agree with the sharply reduced mass loss rates found when Bouret et al. take wind clumping into account.

  • 出版日期2010-4