摘要

The Density Matrix Renormalization Group (DMRG) has become a powerful numerical method that can be applied to nanoscopic and low-dimensional strongly correlated fermionic and bosonic systems. It allows for a very precise calculation of static, dynamic and thermodynamic properties. Its field of applicability has now extended beyond Condensed Matter, and is successfully used in Quantum Chemistry, Statistical Mechanics, Quantum Information Theory, Nuclear and High Energy Physics as well. In this article, we briefly review the main aspects of the method and present some of the most relevant applications. The recent quantum information interpretation, the development of highly accurate time-dependent algorithms and the possibility of using the DMRG as the impurity-solver of the Dynamical Mean Field Method (DMFT) give new insights into its present and potential uses. We review the numerous very recent applications of these techniques where the DMRG has shown to be one of the most reliable and versatile methods in modern computational physics.

  • 出版日期2008-5