摘要

Anneal in reduced pressure hydrogen ambient is known to induce morphological changes in silicon microstructures via markedly increased surface self-diffusivity on exposed silicon surfaces. Here, we investigate the capillary instability of silicon nanostructures under hydrogen anneal. We demonstrate that a surface diffusion mask can significantly improve stability by isolating vulnerable segments from large mass reservoirs. In addition, we find that Plateau-Rayleigh instability shows strong crystallographic dependence, which is explained by the surface energy anisotropy of silicon. We observe that nanowires are the least stable when their axial orientation corresponds to < 100 > and are increasingly stable for < 111 >, < 112 >, and < 110 >.

  • 出版日期2012-2-27