摘要

In genetics, the promoter is one of the most important regulatory elements controlling the spatiotemporal expression of a target gene. However, most studies have focused on core or proximal promoter regions, and information on regions that are more distant from the 5'-flanking region of the proximal promoter is often lacking. Here, approximately 4-kb of the sericin1 (Ser1) promoter was predicted to contain many potential transcriptional factor binding sites (TFBSs). Transgenic experiments have revealed that more TFBSs included in the promoter improved gene transcription. However, multi-copy proximal Ser1 promoter combinations did not improve gene expression at the transcriptional level. Instead, increasing the promoter copy number repressed transcription. Furthermore, a correlation analysis between two contiguous genes, firefly luciferase (FLuc) and EGFP, was conducted at the transcriptional level; a significant correlation was obtained regardless of the insertion site. The ELISA results also revealed a significant correlation between the transcriptional and translational EGFP levels. Therefore, the exogenous gene expression level can be predicted by simply detecting an adjacent EGFP. In conclusion, our results provide important insights for further investigations into the molecular mechanisms underlying promoter function. Additionally, a new approach was developed to quickly screen transgenic strains that highly express exogenous genes.