LOCATION OF gamma-RAY FLARE EMISSION IN THE JET OF THE BL LACERTAE OBJECT OJ287 MORE THAN 14 pc FROM THE CENTRAL ENGINE

作者:Agudo Ivan*; Jorstad Svetlana G; Marscher Alan P; Larionov Valeri M; Gomez Jose L; Lahteenmaki Anne; Gurwell Mark; Smith Paul S; Wiesemeyer Helmut; Thum Clemens; Heidt Jochen; Blinov Dmitriy A; D'Arcangelo Francesca D; Hagen Thorn Vladimir A; Morozova Daria A; Nieppola Elina; Roca Sogorb Mar; Schmidt Gary D; Taylor Brian; Tornikoski Merja; Troitsky Ivan S
来源:Astrophysical Journal Letters, 2011, 726(1): L13.
DOI:10.1088/2041-8205/726/1/L13

摘要

We combine time-dependent multi-waveband flux and linear polarization observations with submilliarc-second-scale polarimetric images at gimel = 7 mm of the BL Lacertae type blazar OJ287 to locate the gamma-ray emission in prominent flares in the jet of the source > 14 pc from the central engine. We demonstrate a highly significant correlation between the strongest gamma-ray and millimeter-wave flares through Monte Carlo simulations. The two reported gamma-ray peaks occurred near the beginning of two major millimeter-wave outbursts, each of which is associated with a linear polarization maximum at millimeter wavelengths. Our very long baseline array observations indicate that the two millimeter-wave flares originated in the second of two features in the jet that are separated by > 14 pc. The simultaneity of the peak of the higher-amplitude gamma-ray flare and the maximum in polarization of the second jet feature implies that the gamma-ray and millimeter-wave flares are cospatial and occur > 14 pc from the central engine. We also associate two optical flares, accompanied by sharp polarization peaks, with the two. -ray events. The multi-waveband behavior is most easily explained if the gamma-rays arise from synchrotron self-Compton scattering of optical photons from the flares. We propose that flares are triggered by interaction of moving plasma blobs with a standing shock. The gamma-ray and optical emission is quenched by inverse Compton losses as synchrotron photons from the newly shocked plasma cross the emission region. The millimeter-wave polarization is high at the onset of a flare, but decreases as the electrons emitting at these wavelengths penetrate less polarized regions.

  • 出版日期2011-1-1
  • 单位国家自然科学基金委员会