摘要

An original numerical model, based on the standard Berg model, is used to simulate the growth mechanism of N-doped VOx deposited with changing oxygen flow in the reactive gas mixture. In order to compare with the numerical model, N-doped VOx films are prepared by reactive magnetron sputtering from a metallic vanadium target immersed in a reactive gas mixture of Ar+O-2+N-2. Both experimental and numerical results show that the addition of N-2 to the process alleviates the hysteresis effect with respect to the oxygen supply. Film compositions obtained from the XPS analysis are compared to the numerical results and the agreement is satisfactory. The results also show that the compound of VN is only found at very low O concentration because of the replacement reaction of VN by O-2 atoms with higher oxygen flow rate.