摘要

Insects are associated with a diversity of bacteria that colonize their midguts. The extent to which these communities reflect maternal transmission, environmental acquisition, and subsequent structuring by the extreme conditions within the insect gut are poorly understood in many species. We used gypsy moth (Lymantria dispar L.) as a model to investigate interactions between egg mass and environmental sources of bacteria on larval midgut communities. Egg masses were collected from several wild and laboratory populations, and the effects of diet, initial egg mass community, and internal host environment were evaluated using 454 16S-rRNA gene pyrosequencing. Wild populations were highly diverse, while laboratory-maintained egg masses were associated with few operational taxonomic units. As larvae developed, their midgut bacterial communities became more similar to each other and the consumed diet despite initial differences in egg mass-associated bacteria. Subsequent experiments revealed that while midgut membership was more similar to bacteria associated with diet than with egg mass-associated bacteria, we were unable to detect distinct, persistent differences attributable to specific host plants. The differences between foliar communities and midgut communities of larvae that ingested them were owing to relative changes in populations of several bacteria phylotypes. We conclude that gypsy moth has a relatively characteristic midgut bacterial community that is reflective of, but ultimately distinct from, its foliar diet. This work demonstrates that environmental acquisition of diverse microbes can lead to similar midgut bacterial assemblages, underscoring the importance of host physiological environment in structuring bacterial communities.

  • 出版日期2014-6