摘要

A systematic method for deriving soft-switching three-port converters (TPCs), which can interface multiple energy, is proposed in this paper. Novel full-bridge (FB) TPCs featuring single-stage power conversion, reduced conduction loss, and low-voltage stress are derived. Two nonisolated bidirectional power ports and one isolated unidirectional load port are provided by integrating an interleaved bidirectional Buck/Boost converter and a bridgeless Boost rectifier via a high-frequency transformer. The switching bridges on the primary side are shared; hence, the number of active switches is reduced. Primary-side pulse width-modulation and secondary-side phase shift control strategy are employed to provide two control freedoms. Voltage and power regulations over two of the three power ports are achieved. Furthermore, the current/voltage ripples on the primary-side power ports are reduced due to the interleaving operation. Zero-voltage switching and zero-current switching are realized for the active switches and diodes, respectively. A typical FB-TPC with voltage-doubler rectifier developed by the proposed method is analyzed in detail. Operation principles, control strategy, and characteristics of the FB-TPC are presented. Experiments have been carried out to demonstrate the feasibility and effectiveness of the proposed topology derivation method.