摘要

We investigate the locations of the satellites of relatively isolated host galaxies in the Sloan Digital Sky Survey and the Millennium Run simulation. Provided we use two distinct prescriptions to embed luminous galaxies within the simulated dark matter halos (ellipticals share the shapes of their halos, while disks have angular momenta that are aligned with the net angular momenta of their halos), we find a fair agreement between observation and theory. Averaged over scales r(p) <= 500 kpc, the satellites of red, high-mass hosts with low star formation rates are found preferentially near the major axes of their hosts. In contrast, the satellites of blue, low-mass hosts with low star formation rates show little to no anisotropy when averaged over the same scale. The difference between the locations of the satellites of red and blue hosts cannot be explained by the effects of interlopers in the data. Instead, it is caused primarily by marked differences in the dependence of the mean satellite location, , on the projected distance at which the satellites are found. We also find that the locations of red, high-mass satellites with low star formation rates show considerably more anisotropy than do the locations of blue, low-mass satellites with high star formation rates. There are two contributors to this result. First, the blue satellites have only recently arrived within their hosts' halos, while the red satellites arrived in the far distant past. Second, the sample of blue satellites is heavily contaminated by interlopers, which suppresses the measured anisotropy compared to the intrinsic anisotropy.

  • 出版日期2010-2-1