摘要

We propose an unsupervised recognition system for single-trial classification of motor imagery (MI) electroencephalogram (EEG) data in this study. Competitive Hopfield neural network (CHNN) clustering is used for the discrimination of left and right MI EEG data posterior to selecting active segment and extracting fractal features in multi-scale. First, we use continuous wavelet transform (CWT) and Student%26apos;s two-sample t-statistics to select the active segment in the time-frequency domain. The multiresolution fractal features are then extracted from wavelet data by means of modified fractal dimension. At last, CHNN clustering is adopted to recognize extracted features. Due to the characteristic of nonsupervision, it is proper for CHNN to classify non-stationary EEG signals. The results indicate that CHNN achieves 81.9% in average classification accuracy in comparison with self-organizing map (SOM) and several popular supervised classifiers on six subjects from two data sets.

  • 出版日期2012-2