摘要

NMO-IgG autoantibody selectively binds to aquaporin-4 (AQP4), the most abundant water channel in the central nervous system and is now considered a useful serum biomarker of neuromyelitis optica (NMO). A series of clinical and pathological observations suggests that NMO-IgG may play a central role in NMO physiopathology. The current study evaluated, in well-differentiated astrocytes cultures, the consequences of NMO-IgG binding on the expression pattern of AQP4 and on plasma membrane water permeability. To avoid or to facilitate AQP4 down-regulation, cells were exposed to inactivated sera in two different situations (1 hr at 4 degrees C or 12 hr at 37 degrees C). AQP4 expression was detected by immunofluorescence studies using a polyclonal anti-AQP4 or a human anti-IgG antibody, and the water permeability coefficient was evaluated by a videomicroscopy technique. Our results showed that, at low temperatures, cell exposure to either control or NMO-IgG sera does not affect either AQP4 expression or plasma membrane water permeability, indicating that the simple binding of NMO-IgG does not affect the water channel%26apos;s activity. However, at 37 degrees C, long-term exposure to NMO-IgG induced a loss of human IgG signal from the plasma membrane along with M1-AQP4 isoform removal and a significant reduction of water permeability. These results suggest that binding of NMO-IgG to cell membranes expressing AQP4 is a specific mechanism that may account for at least part of the pathogenic process.

  • 出版日期2012-6