摘要

The marketing of enantiopure pharmaceuticals has become more common due to regulatory and safety concerns surrounding the potential differences in biological activity of opposite enantiomers. However, achieving the desired enantiopurity can be a challenge, and low levels of the undesired enantiomer (chiral impurity) may be present in the final product. The location and nature of this impurity can potentially alter pharmaceutically relevant properties. In this article, we show that it is possible to identify and quantitate the crystallographic locations of small amounts of one enantiomer (L) in the presence of predominantly the opposite D-enantiomer using solid-state nuclear magnetic resonance (NMR) spectroscopy. Proline was used as a model compound, and crystalline samples containing both D- and L-proline were prepared by solvent evaporation, lyophilization, spray drying, and cryogrinding. Isotopic labeling, C-13 cross polarization-magic angle spinning NMR spectral subtractions, and H-1 T-1 spin-lattice relaxation measurements allowed selective observation and characterization of the crystal environments into which the L-proline impurity was incorporated upon concurrent crystallization with D-proline. Results show that L-proline was incorporated in up to four different crystalline forms, including L-proline as a kinetically trapped substitutional chiral defect in the D-proline host crystal lattice.

  • 出版日期2011-5