摘要

Novel hybrid organic-inorganic coatings with interpenetrating network were synthesized by the acid-catalyzed hydrolytic co-polycondensation of tetraethoxysilane and 3-metacryloxypropyltrimethoxysilane, followed by radical polymerization with methyl methacrylate and triallyl isocyanurate (TAIC). The hybrid coatings were characterized by Fourier transformed infrared spectroscopy, thermogravimetric analysis and scanning electron microscope, and their anti-corrosion behaviors were evaluated by potentiodynamic polarization, electrochemical impedance spectroscopy and salt spray test. The results indicated that the hybrid coatings exhibited excellent anti-corrosion ability by forming a physical barrier between metal and its external environment. Thermal stability of the hybrid coatings was increased after the addition of TAIC. Furthermore, hydrophobic properties of the hybrid coatings were examined by measuring the contact angles, and the change in wetting characteristics of the hybrid coatings was not obvious.