摘要

A globally convergent algorithm for solving equilibrium problems is proposed. The algorithm is based on a proximal point algorithm (shortly (PPA)) with a positive definite matrix M which is not necessarily symmetric. The proximal function in existing (PPA) usually is the gradient of a quadratic function, namely, del(parallel to x parallel to(2)(M)). This leads to a proximal point-type algorithm. We first solve pseudomonotone equilibrium problems without Lipschitzian assumption and prove the convergence of algorithms. Next, we couple this technique with the Banach contraction method for multivalued variational inequalities. Finally some computational results are given.

  • 出版日期2012-7