摘要

A new approach is presented in this paper to calculate the critical threshold value of fracture initiation. It is based on the experimental data for forming limit curves and fracture forming limit curves. The deformation path for finally a fractured material point is assumed as two-stage proportional loading: biaxial loading from the beginning to the onset of incipient necking, followed plane strain deformation within the incipient neck until the final fracture. The fracture threshold value is determined by analytical integration and validated by numerical simulation. Four phenomenological models for ductile fracture are selected in this study, i.e., Brozzo, McClintock, Rice-Tracey, and Oyane models. The threshold value for each model is obtained through best-fitting of experimental data. The results are compared with each other and test data. These fracture criteria are implemented in ABAQUS/EXPLICIT through user subroutine VUMAT to simulate the blanking process of advanced high-strength steels. The simulated fracture surfaces are examined to determine the initiation of ductile fracture during the process, and compared with experimental results for DP780 sheet steel blanking. The comparisons between FE simulated results coupled with different fracture models and experimental one show good agreements on punching edge quality. The study demonstrates that the proposed approach to calculate threshold values of fracture models is efficient and reliable. The results also suggest that the McClintock and Oyane fracture models are more accurate than the Rice-Tracey or Brozzo models in predicting load-stroke curves. However, the predicted blanking edge quality does not have appreciable differences.