Meissner Effect of Dirac Electrons in Superconducting State Due to Inter-Band Effect

作者:Mizoguchi Tomonari*; Ogata Masao
来源:Journal of the Physical Society of Japan, 2015, 84(8): 084704.
DOI:10.7566/JPSJ.84.084704

摘要

Dirac electrons in solids show characteristic physical properties due to their linear dispersion relation and two-band nature. Although the transport phenomena of Dirac electrons in a normal state have intensively been studied, the transport phenomena in a superconducting state have not been fully understood. In particular, it is not clear whether Dirac electrons in a superconducting state show Meissner effect (ME), since a diamagnetic term of a current operator is absent as a result of the linear dispersion. We investigate the ME of three dimensional massive Dirac electrons in a superconducting state on the basis of Kubo formula, and clarify that Meissner kernel becomes finite by use of the inter-band contribution. This mechanism of the ME for Dirac electrons is completely different from that for the electrons in usual metals. Our result shows that the Meissner kernel remains finite even when the superconducting gap vanishes. This is an unavoidable problem in the Dirac electron system as reported in the previous works. Thus, we use a prescription in which we subtract the normal state contribution. In order to justify this prescription, we develop a specific model where the Meissner kernel is obtained by the prescription. We also derive the result for the electron gas by taking the non-relativistic limit of Dirac Hamiltonian, and clarify that the diamagnetic term of the Meissner kernel can be regarded as the inter-band contribution between electrons and positrons in terms of the Dirac model.

  • 出版日期2015-8-15