摘要

Selecting optimum maintenance strategies plays a key role in saving cost, and improving the system reliability and availability. Analytic hierarchical process (AHP) is widely used for maintenance strategies selection in the Multiple Criteria Decision-Making (MCDM) field. But the traditional or hybrid AHP methods either produce multiple, even conflict priority results, or have complicated algorithm structures which are unstable to obtain the optimum solution. Therefore, this paper proposes an integrated Logarithmic Fuzzy Preference Programming (LFPP) based methodology in AHP to solve the optimum maintenance strategies selection problem. The multiplicative constraints and deviation variables are applied instead of additive ones to utilize both qualitative and quantitative data, and process the upper and lower triangular fuzzy judgments to obtain the same priorities. The proposed methodology can produce the unique normalized optimal priority vector for fuzzy pairwise comparison matrices, and it is capable of processing all comparison matrices to obtain the global priorities simultaneously and directly in the form of super-matrix according to the different requirements and judgments of decision-makers. Finally, an example is provided to demonstrate the feasibility and validity of the proposed methodology.