Development of a Nascent Galectin-1 Chimeric Molecule for Studying the Role of Leukocyte Galectin-1 Ligands and Immune Disease Modulation

作者:Cedeno Laurent Filiberto; Barthel Steven R; Opperman Matthew J; Lee David M; Clark Rachael A; Dimitroff Charles J*
来源:The Journal of Immunology, 2010, 185(8): 4659-4672.
DOI:10.4049/jimmunol.1000715

摘要

Galectin-1 (Gal-1), a beta-galactoside-binding lectin, plays a profound role in modulating adaptive immune responses by altering the phenotype and fate of T cells. Experimental data showing recombinant Gal-1 (rGal-1) efficacy on T cell viability and cytokine production, nevertheless, is controversial due to the necessity of using stabilizing chemicals to help retain Gal-1 structure and function. To address this drawback, we developed a mouse Gal-1 human Ig chimera (Gal-1hFc) that did not need chemical stabilization for Gal-1 ligand recognition, apoptosis induction, and cytokine modulation in a variety of leukocyte models. At high concentrations, Gal-1hFc induced apoptosis in Gal-1 ligand(+) Th1 and Th17 cells, leukemic cells, and granulocytes from synovial fluids of patients with rheumatoid arthritis. Importantly, at low, more physiologic concentrations, Gal-1hFc retained its homodimeric form without losing functionality. Not only did Gal-1hFc-binding trigger IL-10 and Th2 cytokine expression in activated T cells, but members of the CD28 family and several other immunomodulatory molecules were upregulated. In a mouse model of contact hypersensitivity, we found that a non-Fc receptor-binding isoform of Gal-1hFc, Gal-1hFc2, alleviated T cell-dependent inflammation by increasing IL-4(+), IL-10(+), TGF-beta(+), and CD25(high)/FoxP3(+) T cells, and by decreasing IFN-gamma(+) and IL-17(+) T cells. Moreover, in human skin-resident T cell cultures, Gal-1hFc diminished IL-17(+) T cells and increased IL-4(+) and IL-10(+) T cells. Gal-1hFc will not only be a useful new tool for investigating the role of Gal-1 ligands in leukocyte death and cytokine stimulation, but for studying how Gal-1-Gal-1 ligand binding shapes the intensity of immune responses. The Journal of Immunology, 2010, 185: 4659-4672.

  • 出版日期2010-10-15