摘要

Although the regulation of function of proteins by allosteric interactions has been identified in many subcellular processes, molecular switches are also known to induce long-range conformational changes in proteins. A less well understood molecular switch involving cis-trans isomerization of a peptidyl-prolyl bond could induce a conformational change directly to the backbone that is propagated to other parts of the protein. However, these switches are elusive and hard to identify because they are intrinsic to biomolecules that are inherently dynamic. Here, we explore the conformational dynamics and free energy landscape of the SH2 domain of interleukin-2-inducible T-cell or tyrosine kinase (ITK) to fully understand the conformational coupling between the distal cis-trans molecular switch and its binding pocket of the phosphotyrosine motif. We use multiple microsecond-long all-atom molecular dynamics simulations in explicit water for over a total of 60 mu s. We show that cis-trans isomerization of the Asn286-Pro287 peptidyl-prolyl bond is directly coupled to the dynamics of the binding pocket of the phosphotyrosine motif, in agreement with previous NMR experiments. Unlike the cis state that is localized and less dynamic in a single free energy basin, the trans state samples two distinct conformations of the binding pocket-one that recognizes the phosphotyrosine motif and the other that is somewhat similar to that of the cis state. The results provide an atomic-level description of a less well understood allosteric regulation by a peptidyl-prolyl cis-trans molecular switch that could aid in the understanding of normal and aberrant subcellular processes and the identification of these elusive molecular switches in other proteins.

  • 出版日期2017-6-29