摘要

The interaction of a planar shock wave with a triangle-shaped sulfur hexafluoride (SF6) cylinder surrounded by air is numerically studied using a high resolution finite volume method with minimum dispersion and controllable dissipation reconstruction. The vortex dynamics of the Richtmyer-Meshkov instability and the turbulent mixing induced by the Kelvin-Helmholtz instability are discussed. A modified reconstruction model is proposed to predict the circulation for the shock triangular gas-cylinder interaction flow. Several typical stages leading the shock-driven inhomogeneity flow to turbulent mixing transition are demonstrated. Both the decoupled length scales and the broadened inertial range of the turbulent kinetic energy spectrum in late time manifest the turbulent mixing transition for the present case. The analysis of variable-density energy transfer indicates that the flow structures with high wavenumbers inside theKelvin-Helmholtz vortices can gain energy from the mean flow in total. Consequently, small scale flow structures are generated therein by means of nonlinear interactions. Furthermore, the occasional "pairing" between a vortex and its neighboring vortex will trigger the merging process of vortices and, finally, create a large turbulent mixing zone.