All-Inorganic Perovskite Nanocrystals for High-Efficiency Light Emitting Diodes: Dual-Phase CsPbBr3-CsPb2Br5 Composites

作者:Zhang, Xiaoli; Xu, Bing; Zhang, Jinbao; Gao, Yuan; Zheng, Yuanjin; Wang, Kai*; Sun, Xiao Wei*
来源:Advanced Functional Materials, 2016, 26(25): 4595-4600.
DOI:10.1002/adfm.201600958

摘要

A dual-phase all-inorganic composite CsPbBr3-CsPb2Br5 is developed and applied as the emitting layer in LEDs, which exhibited a maximum luminance of 3853 cd m(-2), with current density (CE) of approximate to 8.98 cd A(-1) and external quantum efficiency (EQE) of approximate to 2.21%, respectively. The parasite of secondary phase CsPb2Br5 nanoparticles on the cubic CsPbBr3 nanocrystals could enhance the current efficiency by reducing diffusion length of excitons on one side, and decrease the trap density in the band gap on the other side. In addition, the introduction of CsPb2Br5 nanoparticles could increase the ionic conductivity by reducing the barrier against the electronic and ionic transport, and improve emission lifetime by decreasing nonradiative energy transfer to the trap states via controlling the trap density. The dual-phase all-inorganic CsPbBr3-CsPb2Br5 composite nanocrystals present a new route of perovskite material for advanced light emission applications.