Docosahexaenoic Acid Enhances Hepatic Serum Amyloid A Expression via Protein Kinase A-dependent Mechanism

作者:Tai Chen C; Chen Ching Y; Lee Hsuan S; Wang Ya C; Li Tsai K; Mersamm Harry J; Ding Shih T*; Wang Pei H
来源:Journal of Biological Chemistry, 2009, 284(47): 32239-32247.
DOI:10.1074/jbc.M109.024661

摘要

Serum amyloid A (SAA) reduces fat deposition in adipocytes and hepatoma cells. Human SAA1 mRNA is increased by docosahexaenoic acid (DHA) treatment in human cells. These studies asked whether DHA decreases fat deposition through SAA1 and explored the mechanisms involved. We demonstrated that DHA increased human SAA1 and C/EBP beta mRNA expression in human hepatoma cells, SK-HEP-1. Utilizing a promoter deletion assay, we found that a CCAAT/enhancer-binding protein beta (C/EBP beta)-binding site in the SAA1 promoter region between -242 and -102 bp was critical for DHA-mediated SAA1 expression. Mutation of the putative C/EBP beta-binding site suppressed the DHA-induced SAA1 promoter activity. The addition of the protein kinase A inhibitor H89 negated the DHA-induced increase in C/EBP beta protein expression. The up-regulation of SAA1 mRNA and protein by DHA was also inhibited by H89. We also demonstrated that DHA increased protein kinase A (PKA) activities. These data suggest that C/EBP beta is involved in the DHA-regulated increase in SAA1 expression via PKA-dependent mechanisms. Furthermore, the suppressive effect of DHA on triacylglycerol accumulation was abolished by H89 in SK-HEP-1 cells and adipocytes, indicating that DHA also reduces lipid accumulation via PKA. The observation of increased SAA1 expression coupled with reduced fat accumulation mediated by DHA via PKA suggests that SAA1 is involved in DHA-induced triacylglycerol breakdown. These findings provide new insights into the complicated regulatory network in DHA-mediated lipid metabolism and are useful in developing new approaches to reduce body fat deposition and fatty liver.

  • 出版日期2009-11-20