摘要

A high-throughput sequential tensile test method has been developed to characterize the fracture strength distribution of microfabricated polycrystalline silicon, the primary structural material used in microelectromechanical systems (MEMS). The resulting dataset of over 1,000 microtensile tests reveals subtle extreme-value behavior in the tails of the distribution, demonstrating that the common two-parameter Weibull distribution is inferior to a three-parameter Weibull model. The results suggest the existence of a cut-off or threshold stress (1.446 GPa for this particular material) below which tensile failure will not occur. The existence of a cut-off stress suggests that the material's flaw size distribution and toughness distribution are both also bounded. From an application perspective, the cut-off stress provides a statistically-sound basis for reliable design. While the sequential method is demonstrated here for tensile strength distributions in polycrystalline silicon MEMS, the technique could be extended to a wide range of mechanical tests (bending strength, elastic modulus, fracture toughness, creep, etc.) for both microsystem and conventional materials.

  • 出版日期2010-9