摘要

On-chip interconnections play an important role in multi/many-processor systems-on-chip (MPSoCs). In order to achieve efficient optimization, each specific application must utilize a specific architecture, and consequently a specific interconnection network. For design space exploration and finding the best NoC solution for each specific application, a fast and flexible NoC simulator is necessary, especially for large design spaces. In this paper, we present an FPGA-based NoC co-simulator, which is able to be configured via software. In our proposed NoC simulator, entitled DuCNoC, we implement a Dual-Clock router micro-architecture, which demonstrates 75x-350x speed-up against BOOKSIM. Additionally, we implement a two-layer configurable global interconnection in our proposed architecture to (1) reduce virtualization time overhead, (2) make an efficient trade-off between the resource utilization and simulation time of the whole simulator, and especially (3) provide the capability of simulating irregular topologies. Migration of some important sub-modules like traffic generators (TGs) and traffic receptors (TRs) to software side, and implementing a dual-clock context switching in virtualization are other major features of DuCNoC. Thanks to its dual-clock router micro-architecture, as well as TGs and TRs migration to software side, DuCNoC can simulate a 100-node (10 x 10) non-virtualized or a 2048-node virtualized mesh network on Xilinx Zynq-7000.

  • 出版日期2018-2