摘要

A new surface molecularly imprinted polymer (MIP) based on nano-TiO2 was developed using propazine (Pro) as a template molecule, ethyleneglycol dimethacrylate (EGDMA) as a crosslinker, methacrylic acid (MAA) as a functional monomer, and 2,2'-azobis (isobutyronitrile) (AIBN) as an initiator. Structures of the newly synthesized surface MIPs were characterized by Fourier transmission infrared spectrometry (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD). The MIP had a good adsorption capacity and high recognition selectivity to propazine. Meanwhile, it exhibited a cross-selectivity for simazine (Sim) and atrazine (Atr). The MIPs were used as a solid phase extraction (SPE) material. Concomitant extraction, purification, and determination of three pesticides (Pro, Sim, and Atr) residues in water, soil, and maize plant and grain samples were performed by MIP-SPE coupled with high performance liquid chromatography (HPLC). The highly selective separation and enrichment of Pro, Atr, and Sim from the complex environmental media can be achieved. Thus, the newly developed technique provides an analytical platform to quantify the trace amount of Pro, Sim, and Atr residues in multi environmental media and food source.