摘要

In this study, a generalized plane strain micromechanical model is presented to obtain micro-stress/strain fields within the unidirectional (UD) hollow fiber reinforced composites. In addition, the thermally induced residual stresses during cooling down process, overall elastic properties and energy absorption capability of hollow reinforced composite are studied. The representative volume element (RVE) of the composite consists of a quarter of the fiber surrounded by matrix to represent the real composite with repeating square array of fibers. Fully bonded fiber-matrix interface condition is considered and the displacement continuity and traction reciprocity are properly imposed to the interface. The cubic serendipity shape functions are used to convert the solution domain to a proper rectangular domain. A Least-squares based differential quadrature element method (DQEM) is used to obtain solutions for the governing partial differential equations of the problem. Results of the presented method for various stress and displacement components and thermal residual stresses show excellent agreement with finite element analysis. Furthermore, predicted overall properties also show good agreement with other available analytical and finite element results. Moreover, results also revealed that the presented model can provide highly accurate predictions with a few number of elements and grid points within each element.

  • 出版日期2012-12