摘要

Memory and perception have been associated with common sensory cortical activity. However, previous studies have only investigated memory and perception effects associated with a single feature (i.e., spatial location or color). The aim of the present functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) study was to assess whether memory for multiple (two) features would produce sensory cortical activity that mirrored perceptual processing of the same features. During encoding, moving or stationary abstract shapes were presented to the right or left of fixation. During retrieval, shapes were presented at fixation and participants classified each item as previously in motion or stationary within the right or left visual field. Memory for items in motion, regardless of spatial location, produced fMRI activity in perceptual motion processing region MT+. Memory for motion and spatial location produced contralateral and ipsilateral fMRI activity in perceptual motion processing sub-region MT. Following TMS to MT, memory for motion was impaired, but performance did not differ between the contralateral and ipsilateral visual fields. The present results are consistent with previous findings in that memory for motion produced fMRI activity in MT+ and was impaired following TMS to MT. However, memory for motion and spatial location produced contralateral and ipsilateral fMRI and TMS effects, deviating from the primarily contralateral perceptual processing organization of MT. The present evidence suggests that during memory for motion and spatial location only motion information is coded in motion processing cortex, while previous findings suggest spatial location information is coded in earlier extrastriate cortex.

  • 出版日期2011-3-15