摘要

For anomaly detection, anomalies existing in the background will affect the detection performance. Accordingly, a background refinement method based on the local density is proposed to remove the anomalies from the background. In this work, the local density is measured by its spectral neighbors through a certain radius which is obtained by calculating the mean median of the distance matrix. Further, a two-step segmentation strategy is designed. The first segmentation step divides the original background into two subsets, a large subset composed by background pixels and a small subset containing both background pixels and anomalies. The second segmentation step employing Otsu method with an aim to obtain a discrimination threshold is conducted on the small subset. Then the pixels whose local densities are lower than the threshold are removed. Finally, to validate the effectiveness of the proposed method, it combines Reed-Xiaoli detector and collaborative-representation-based detector to detect anomalies. Experiments are conducted on two real hyperspectral datasets. Results show that the proposed method achieves better detection performance.