摘要

The hypersonic Mach number independence principle of Oswatitsch is important for hypersonic vehicle design. It explains why, above a certain flight Mach number (M (a) a parts per thousand 4-6, depending on the body shape), some aerodynamic properties become independent of the flight Mach number. For ground test facilities this means that it is sufficient for the Mach number in the test section to be high enough, that Mach number independence exists. However, the principle was derived for calorically perfect gas and inviscid flow only. In this paper a theoretical study for blunt bodies in the case of viscous flow is presented. We provide numerical results which give insight into how attached viscous flow behaves at high Mach numbers. The flow past an axisymmetric configuration is analysed by applying a coupled Euler/second-order boundary-layer method. Wall boundaries are treated by assuming an adiabatic or radiation-adiabatic wall for laminar flow. Calorically perfect or equilibrium air is accounted for. Lift, drag, and moment coefficients, and lift-to-drag ratios are given for several combinations of flight Mach number and altitude, i.e. Reynolds number. For blunt bodies considered here, which are pressure dominated, Mach number independence occurs for the adiabatic wall, but not for the radiation-adiabatic wall assumption.

  • 出版日期2011-8