Abiotic Stress Resistance, a Novel Moonlighting Function of Ribosomal Protein RPL44 in the Halophilic Fungus Aspergillus glaucus

作者:Liu Xiao Dan; Xie Lixia; Wei Yi; Zhou Xiaoyang; Jia Baolei; Liu Jinliang; Zhang Shihong*
来源:Applied and Environmental Microbiology, 2014, 80(14): 4294-4300.
DOI:10.1128/AEM.00292-14

摘要

Ribosomal proteins are highly conserved components of basal cellular organelles, primarily involved in the translation of mRNA leading to protein synthesis. However, certain ribosomal proteins moonlight in the development and differentiation of organisms. In this study, the ribosomal protein L44 (RPL44), associated with salt resistance, was screened from the halophilic fungus Aspergillus glaucus (AgRPL44), and its activity was investigated in Saccharomyces cerevisiae and Nicotiana tabacum. Sequence alignment revealed that AgRPL44 is one of the proteins of the large ribosomal subunit 60S. Expression of AgRPL44 was upregulated via treatment with salt, sorbitol, or heavy metals to demonstrate its response to osmotic stress. A homologous sequence from the model fungus Magnaporthe oryzae, MoRPL44, was cloned and compared with AgRPL44 in a yeast expression system. The results indicated that yeast cells with overexpressed AgRPL44 were more resistant to salt, drought, and heavy metals than were yeast cells expressing MoRPL44 at a similar level of stress. When AgRPL44 was introduced into M. oryzae, the transformants displayed obviously enhanced tolerance to salt and drought, indicating the potential value of AgRPL44 for genetic applications. To verify the value of its application in plants, tobacco was transformed with AgRPL44, and the results were similar. Taken together, we conclude that AgRPL44 supports abiotic stress resistance and may have value for genetic application.

  • 出版日期2014-7
  • 单位吉林农业科技学院; 吉林大学