摘要

The inflammasome is activated in response to pathogen or endogenous danger signals and acts as an initiator and mediator of inflammatory reactions. In this study, we wished to identify whether the inflammasome is activated in vivo by injury. And if so, we wanted to characterize the kinetics, the immune cell distribution, and the functional impact of inflammasome activation on the injury response. Because caspase-1 activation is the final product of the inflammasome pathway, we used cleaved caspase-1 p10 and p20 as a measure for inflammasome activation in cells. We first developed a procedure to stain for caspase-1 p10 and p20 by flow cytometry (FACS) in lipopolysaccharide + adenosine triphosphate-stimulated spleen cells. This method for measuring caspase-1 activation was validated using FLICA (fluorochrome inhibitor of caspase), a fluorescently tagged specific binding reagent for activated caspase-1. Once validated by in vitro studies, we measured caspase-1 activation by FACS in immune cell subsets prepared from the lymph nodes and spleens of sham-or burn-injured mice at different time points. Lastly, the functional significance of inflammasome activation following burn injury was tested in mice treated with the specific caspase-1 inhibitor, AC-YVAD-CMK. The results of in vitro studies indicated that adenosine triphosphate and lipopolysaccharide stimulation induced significant caspase-1 activation in dendritic cells, macrophages, and natural killer (NK) cells. This approach also revealed caspase-1 activation in CD4 and CD8 T cells as well as B cells. We then measured caspase-1 activation in cells prepared from the lymph nodes and spleens of sham-or burn-injured mice. Significant caspase-1 activation was detected in macrophages and dendritic cells by 4 h after injury and peaked by day 1 after injury. FLICA staining confirmed that caspase-1 activation occurred in these cells at 1 day after injury. We also found significant injury-induced caspase-1 activation in NK cells, CD4 T cells, and B cells, but CD8 T cells did not demonstrate caspase-1 activation. Surprisingly, we found that blocking caspase-1 activation with AC-YVAD-CMK in vivo caused significantly higher mortality in burninjured mice (P < 0.01). Taken together, these findings document that injury induces inflammasome activation in many immune cell subsets, but primarily in macrophages, and that inflammasome activation plays a protective role in the host response to severe injury.

  • 出版日期2012-1