摘要

Inverse synthetic aperture radar (ISAR) cross-range scaling is used to obtain the actual cross-range size of the target, which is essential for space surveillance and automatic target recognition. In this letter, a novel two-step ISAR cross-range scaling method for earth-orbit targets is proposed, which improves the computational efficiency through the use of prior information and achieves high estimation accuracy. An initial rotation velocity (RV) is calculated first using the open two-line element data of the satellite orbit to coarsely achieve a cross-range scaling of the ISAR image with high efficiency. Then, the refined cross-range scaling result is obtained with an accurate RV, which is accomplished by the isolated scatterer extraction and the chirp-rate estimation, wherein the blob detection and the integrated cubic phase function are employed, respectively. The initial RV is used to narrow the search width of the chirp-rate estimation, and the corresponding computational burden is expected to decrease accordingly. Finally, simulations and real-data experiments are performed to verify the effectiveness and the accuracy of the proposed method.