摘要

More and more sensitive information is transmitted and stored in computer networks. Security has become a critical issue. As traditional cryptographic systems are now vulnerable to attacks, DNA based cryptography has been identified as a promising technology because of the vast parallelism and extraordinary information density. While a body of research has proposed the DNA based encryption algorithm, no research has provided solutions to distribute complex and long secure keys. This paper introduces a Hamming code and a block cipher mechanism to ensure secure transmission of a secure key. The research overcomes the limitation on the length of the secure key represented by DNA strands. Therefore it proves that real biological DNA strands are useful for encryption computing. To evaluate our method, we apply the block cipher mechanism to optimize a DNA-based implementation of a conventional symmetric encryption algorithm, described as "yet another encryption algorithm". Moreover, a maximum length matching algorithm is developed to provide immunity against frequency attacks.