摘要

Division of the evolutionary search among multiple multi-objective evolutionary algorithms (MOEAs) is a recent advantage in MOEAs design, particularly in effective parallel and distributed MOEAs. However, most these algorithms rely on such a central (re) division that affects the algorithms' efficiency. This paper first proposes a local MOEA that searches on a particular region of objective space with its novel evolutionary selections. It effectively searches for Pareto Fronts (PFs) inside the given polar-based region, while nearby the region is also explored, intelligently. The algorithm is deliberately designed to adjust its search direction to outside the region - but nearby - in the case of a region with no Pareto Front. With this contribution, a novel island model is proposed to run multiple forms of the local MOEA to improve a conventional MOEA (e. g. NSGA-II or MOEA/D) running along - in another island. To dividing the search, a new division technique is designed to give particular regions of objective space to the local MOEAs, frequently and effectively. Meanwhile, the islands benefit from a sophisticated immigration strategy without any central (re) collection, (re) division and (re) distribution acts. Results of three experiments have confirmed that the proposed island model mostly outperforms to the clustering MOEAs with similar division technique and similar island models on DTLZs. The model is also used and evaluated on a real-world combinational problem, flexible logistic network design problem. The model definitely outperforms to a similar island model with conventional MOEA (NSGA-II) used in each island.

  • 出版日期2013-5